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�� Introduction

In this paper we consider two problems� one from geometry� one
from analysis�

Consider� here and throughout this paper� two connected� simply
connected� closed� bounded domains D� and D� in R� with smooth
boundaries� Suppose that the domains have equal area� It is well�known
that there exists an area�preserving di�eomorphism � � D� � D� which
is smooth up to the boundary� �For a discussion of this and related
questions see ����� However� the di�erential equations which determine
� form an underdetermined system and hence � cannot be expected to
closely re	ect the geometry of the domains D� and D�� Consequently� it
is an interesting problem to 
nd further conditions on an area preserving
di�eomorphism to more tightly link the di�eomorphism to the geometry
of the domains�

Such a condition is suggested by the following theorem of R� Schoen
��� and� independently� F� Labourie ���� Let M be a compact Riemann
surface of genus g � �� Let g�� g� be a pair of hyperbolic metrics on M �
We say a map u � �M� g��� �M� g�� is a minimal map if the graph of u
is a minimal surface in M �M�

Theorem ���� There is a unique� area preserving� minimal map
u � �M� g��� �M� g�� homotopic to the identity�
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The theorem has since been generalized by Y�I� Lee ����
In this result the surface M is compact so boundary considerations

do not arise� However motivated by the theorem we consider the fol�
lowing�

Problem �� LetD� and D� be connected� simply connected� closed�
bounded domains in R� with smooth boundaries and with equal areas�
Find an area preserving di�eomorphism � � D� � D� smooth up to the
boundary such that the graph of �� graph���� is a minimal surface in
R� � R��R��

Consider the symplectic form �� � dx� � dy� � dx� � dy� on R� �
R��R�� where dxi � dyi are the standard area forms on Di � R�� i �

� �� A di�eomorphism � � D� � D� is area preserving if and only if
its graph is a lagrangian surface in �R�� ���� Hence the problem can
be reformulated as� Find a di�eomorphism � � D� � D� smooth up
to the boundary such that graph ��� is a minimal lagrangian surface
in �R�� ���� We will call such a di�eomorphism a minimal lagrangian
di�eomorphism� A minimal lagrangian di�eomorphism � � D� � D�

determines a minimal lagrangian surface� graph �� with boundary lying
on the lagrangian torus T � � �D� � �D�� We are thus led to consider
a free boundary problem for minimal lagrangian surfaces�

The subject of minimal lagrangian surfaces is relatively new with
only rather preliminary results� We have devoted x
 to a discussion
of some of these results attempting to unify the various points of view
around the ideas of the lagrangian angle and the Maslov form�

In x� we use the lagrangian angle to show that there are pairs of
domains D� and D� for which there is no minimal lagrangian di�eo�
morphism D� � D�� Given a pair of domains D� and D� consider the
lagrangian torus T � � �D� � �D� � R

�� In x
 we show that on T �

there is a function �T � � the lagrangian angle� well de
ned mod �Z� Let
� � D� � D� be an orientation preserving di�eomorphism� The bound�
ary trace of � determines a �
� 
� curve� �� on T � along which the
lagrangian angle� �T �� is a well de
ned function� We de
ne�

variation��� � supx�y��j�T ��x�� �T ��y�j�

We de
ne the variation�D�� D�� to be the in
mum of variation��� over
all di�eomorphisms � � D� � D�� Then�

Theorem ���� Let D� and D� be connected� simply connected�
closed� bounded domains in R� with smooth boundary and with equal
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areas� Suppose that�

variation�D�� D�� � 
�

Then there are no minimal lagrangian di�eomorphisms � � D� � D�

smooth up to the boundary�

It is easy to 
nd pairs of domains �D�� D�� satisfying

variation�D�� D�� � 
�

Roughly speaking� variation�D�� D�� measures the di�erence of the cur�
vatures of the boundary curves �Di � R�� On the other hand� if both
domains Di are convex� then variation�D�� D�� � 
�

In x� we prove an implicit function theorem which implies that if a
pair �D�� D�� of domains admits a minimal lagrangian di�eomorphism
� � D� � D�� then any pair � �D�� �D�� su�ciently close to �D�� D��
also admits a minimal lagrangian di�eomorphism �� � �D� � �D�� This
result is based on a study of a Riemann�Hilbert boundary system that
arises from the linearization of the equations determining a minimal
lagrangian di�eomorphism�

x� and x� are devoted to proving an existence theorem for minimal
lagrangian di�eomorphisms� To describe the result let �i denote the
curvature of �Di in R

�� Suppose that D� and D� are connected� sim�
ply connected� closed� bounded domains� We say the pair �D�� D�� is
pseudoconvex if�

min
�D�

�� �min
�D�

�� 	 ��

Note that if �D�� D�� is pseudoconvex� one of the domains may not be
convex� We prove�

Theorem ���� Let �D�� D�� be a pseudoconvex pair of domains
with smooth boundaries� satisfying area�D�� � area�D��� Then there is
a minimal lagrangian di�eomorphism � � D� � D�� smooth up to the
boundary�

The proof of this theorem uses convergence properties of J�holo�
morphic discs similar in spirit to arguments of Bedford�Gaveau ��� and
Gromov ���� However� unlike the arguments of ��� and ���� in our set�
ting the boundaries of the holomorphic discs lie on a surface that con�
tains complex tangent points� The pseudoconvexity condition on the
pair �D�� D�� insures that the boundaries of the holomorphic discs are



��� jon g� wolfson

bounded away from the complex tangent points and hence the discs can
be shown to converge�

The problem from analysis is more classical�

Problem �� Let D� and D� be connected� simply connected� closed�
bounded domains in R� with smooth boundaries and with equal areas�
Find a smooth function w on D� satisfying the Monge�Amp�ere equation�

wxxwyy � �wxy�
� � 
�

such that the gradient of w� rw� de�nes a di�eomorphism D� � D��

Problem � is a boundary value problem for the Monge�Amp�ere equa�
tion� Following the terminology of Pogorelov ���� it is known as the
�second boundary value problem�� �The �
rst boundary value prob�
lem� is the Dirichlet problem�� In the 
����s assuming both domains
are convex Pogorelov produced a �generalized� solution in the sense of
A� D� Alexandrov� More recently� Brenier ��� showed the existence and
uniqueness of a weak solution for domains in any dimension such that
the Lebesgue measure of their boundaries is zero� Thus the problem is
a question of the regularity of the solution� Assuming both domains are
strictly convex and two dimensional Delano�e ��� in 
��� proved regu�
larity� In 
��
 Ca�arelli in a series of papers �see in particular ��� and
���� proved regularity for convex domains in arbitrary dimensions� Caf�
farelli ��� also gave an example to show that if convexity is not assumed
regularity can be false� We remark that the work of Brenier� Delano�e
and Ca�arelli allows more general functions on the right�hand side of
the above equation than considered here�

We observe in x� that Problems 
 and � are essentially equivalent�
In fact� the gradient of a solution of Problem � is a solution of Prob�
lem 
� and a solution of Problem 
 determines a solution of Problem ��
It follows that the existence and non�existence results that we derived
for minimal lagrangian di�eomorphisms imply analogous results for the
second boundary value problem for the Monge�Amp�ere equation� In
particular� the obstruction to existence we describe in x� gives a geo�
metric necessary condition on pairs of domains �D�� D�� for a solution
of the second boundary value problem�

Theorem ���� Let �D�� D�� be a pair of connected� simply con�
nected� closed� bounded domains in R� with smooth boundaries and equal
areas� If

variation�D�� D�� � 
�
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then there is no regular solution of the second boundary�value problem
for the Monge�Amp�ere equation�

The existence result of x� gives an existence theorem for the sec�
ond boundary value problem that includes and extends the regularity
theorem of Delano�e�

Corollary ���� Let �D�� D�� be a pseudoconvex pair of domains
with smooth boundaries� satisfying area�D�� � area�D��� Then there is
a solution of the second boundary value problem for the Monge�Amp�ere
equation smooth up to the boundary� that is� there is a smooth function
w on D� satisfying�

wxxwyy � �wxy�
� � 


such that the gradient of w� rw� de�nes a di�eomorphism �D�� �D���
�D�� �D���

Theorem ��
� Corollary ��� and their proofs show that convexity is
not central to the existence and nonexistence of smooth solutions of the
second boundary value problem� Rather� more subtle geometry of the
torus T � � �D���D�� such as the location on T � of J�complex tangent
points� plays a more fundamental role� However� the general problem of
giving necessary and su�cient conditions for the solution of Problems

 and � remains open�

Throughout this paper all domains D in R� will be assumed to
have smooth boundary and to be connected� simply connected� closed
and bounded unless otherwise noted�

We wish to thank R� Schoen for many discussions on topics related
to this work�

�� Lagrangian submanifolds and the Maslov form

We will be considering the graphs of area�preserving maps D� �
D�� or equivalently� lagrangian surfaces in R�� The purpose of this
section is to develop the requisite geometry� It is certainly possible
to do this simply for lagrangian surfaces in R�� But� as we will see�
it is not more di�cult to describe this geometry in the more general
setting of lagrangian immersions in K�ahler manifolds� Moreover� in the
general setting� the relation between the topology and geometry of the
lagrangian immersion and that of the ambient manifold becomes clear�

Let X be a K�ahler manifold of complex dimension n� with K�ahler
form � and complex structure J � Let L be a smooth connected oriented
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manifold of real dimension n� and let 
 � L� X be a lagrangian immer�
sion� Let f��� � � � � �n� ��� � � � � �ng be an orthonormal coframe adapted to
L it follows that�

�i� f�� � � � �ng is an orthonormal coframe on L for the induced metric�

�ii� �� � � � �� �n � � on L�

�iii� J�j � �j � j � 
� � � � � n�

The 
�forms

�j � �j � i �j � j � 
� � � � � n��
�
�

form a unitary coframe of 
�TX adapted to L� Let ��j�k� denote the
connection 
�forms with respect to this coframe� Set�


 �



�
�i
X
k

�k�k���
���

An easy computation yields�

Proposition ���� 
 is a well�de�ned real valued ��form on L�

Denote the curvature two�form of X by ��j�k�� Then

d�i
X
k

�k�k� � i
X
k

�k�k � Ric��
���

Suppose that X is K�ahler�Einstein � Ric � R �� and 
 � L � X is a
lagrangian immersion� From ���� it follows that 
 is closed� Hence 

represents a cohomology class �
 � � H��L�R��

De�nition ���� The closed one�form 
 is called the Maslov form�

Let K and r denote the canonical line bundle on X and its induced
connection� respectively� The curvature of 
�r satis
es�

c��

�r� � 
�Ric � R
�� � ���
���

since 
 is lagrangian� Thus 
�r is a 	at connection on 
�K� The holon�
omy of 
�r is� then� an element of Hom�H��L�Z�� S

�� � H��L�S��
which we denote Hol�
��

The holonomy and the Maslov form 
 are closely related� To see
this consider the short exact sequence

�� �Z� R
e� S� � ��
���
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where e�t� � e�it� This determines the long exact cohomology sequence

�� H��L�Z�
i� H��L�R�

e� H��L�S��
�� H��L�Z� � H��L�R�

	 c�
H��L� C��

where H��L� C�� is the space of C� complex line bundles over L� Apply�
ing the sequence to the line bundle 
�K� we obtain that ��Hol�
�� � ��
since c��


�K� � �� From �
��� it follows that the cohomology class
�
 � � H��L�R� satis
es e��
 �� � Hol�
�� Thus if Hol�
� � � �i�e�� the
connection 
�r has no holonomy�� then �
 � is an element of H��L�Z��

De�nition ���� When Hol�
� � � the cohomology class
�
 � � H��L�Z� is called the Maslov class of 
 and denoted Mas�
��

The classical de
nitions of the Maslov class assume ���X� � � �and
hence Hol�
� � ��� Our de
nition reduces to the classical one when
���X� � ��

To give a description of the Maslov class of a lagrangian immersion

 which is more suitable for computation� let � � 
�K � L denote
the bundle projection and suppose that Hol�
� � �� Choose x	 � L
and v � ����x	� with jvj � 
� Use the 	at hermitian connection 
�r
to construct� by parallel translation� a parallel section � of 
�K with
j�j � 
 and ��x	� � v� For each point x � L� ��x� is a unit �n� �� form
at 
�x� � X � Let Tx denote the oriented unit tangent n�plane of L at x
considered as a subspace of T��x�X � We de
ne a function � on L with
values in R��Zby�

��x��Tx� � e�i��x���
���

De�nition ��	� The function � is called the lagrangian angle of 
�

� depends on the choice of v � ����x	�� jvj � 
� A di�erent choice
will change � by the addition of a constant� Hence� d� is a well�de
ned
closed 
�form on L� d� represents a cohomology class in H��L�Z��

Theorem ���� d� � 
 and therefore �d�� � Mas�
��

Proof� Let � be a parallel section of 
�K of unit length� Choose a
unitary coframe f��� � � � � �ng adapted to L as described above� Then�

� � e�i��� � � � � � �n � e�i��� � � � � � �n��
� �
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since �j � �j � j � 
� � � � � n� along L� Let r denote the connection 
�r
on 
�K� Then

� � r� � ��id� �
X
j

�j�j�
 ���
���

Hence� �d� � i
P

j �j�j � � 
� q�e�d�

Remark ���� When K � X is trivial and the compatible connec�
tion r has no holonomy� a simpler de
nition of the lagrangian angle is
possible� Let � be a parallel section of K � X such that j�j � 
� For a
lagrangian immersion 
 the n�form 
�� has unit length� Hence� we can
write

�
����x� � e�i��x�dvolx��
���

where dvolx is the volume form on L determined by the Riemannian
metric induced by 
� More generally� we can de
ne a lagrangian angle
�P on the Grassmann bundle P � X of oriented lagrangian n�planes
in TX � as follows� For each x � X and each unit lagrangian n�plane Px
in TxX � set

��x��Px� � e�i�P�Px���
�
��

Then �P is a function on P with values in R��Z�

Remark ���� The above treatment can be formulated for L unori�
ented� In this case the lagrangian angle� de
ned as above� is well�de
ned
mod Z�

Next we relate the lagrangian angle and the Maslov form to more
classical geometric invariants�

Theorem ��	� Suppose X is a K�ahler�Einstein manifold and 
 �
L � X is a lagrangian immersion� Let H denote the mean curvature
vector �eld of L in X� Then


 �



�
�Hy ���

In particular� the one�form �
�
�Hy �� on L is closed� When L has no

holonomy 	i�e��the line bundle 
�K has no holonomy
� then �
� �Hy ��

represents the Maslov class of 
 in H��L�Z��

Proof� Left to the reader q�e�d�
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Corollary ���� If X is a K�ahler�Einstein manifold and 
 � L� N
is a lagrangian immersion� then the mean curvature vector H is an
in�nitesimal symplectic motion� Equivalently� H is tangent to the space
of lagrangian submanifolds near L�

Proof� The Lie derivative of � in the direction H is given by�

LH��� � d�Hy �� �Hy d��

The result follows� q�e�d�

Remark ��	� When X � C n with its standard hermitian metric�
the theorem and its corollary occur in Harvey�Lawson ���� When X is
Ricci�	at and simply�connected they occur in Dazard ���� When X �
CP � with the Fubini�Study metric they occur in ���� and as described
here the results are due to Bryant ����

Further we have�

Corollary ���� Suppose X is a K�ahler�Einstein manifold and 
 is
a lagrangian immersion�

	i
 If 
 is a minimal immersion� then Hol�
� � �� Mas�
� � � and �

is constant on each component of L�

	ii
 If Mas�
� � �� then � is a well�de�ned function on L with values
in R�

The condition Mas�
� � � implicitly assumes that Hol�
� � ��
When X has complex dimension �� the lagrangian angle � has some

special properties� First� suppose X � C
� � R

� with the standard
K�ahler structure� We have already observed in Remark �
�
� that in
this case the lagrangian angle � can be de
ned as a function with values
in R��Zon the space of oriented lagrangian ��planes in R��

Proposition ���� If Pi � i � 
� � � are oriented lagrangian ��planes
in R� satisfying ��P�� � ��P�� mod Z� then there is an orthogonal
complex structure J on R� such that either P� and P� are J complex
lines or P� and �P� are J complex lines� where �P� denotes the ��plane
P� with the orientation reversed�

Proof� Observe that if P� and P� are oriented lagrangian ��planes�
then ��P�� � ��P�� mod Z implies either ��P�� � ��P�� mod �Z
or ��P�� � ��P�� � 
 mod �Z� We begin by supposing that ��P�� �
��P�� mod �Z�Without loss of generality we can suppose that P� is the
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lagrangian plane fy� � y� � �g and so ��P�� � � mod �Z�First suppose
that P� and P� intersect in a line� Changing coordinates� if necessary�
we can suppose that the line of intersection is fy� � y� � x� � �g�
Using the holomorphic ��� ���form dz� � dz� on C � and ���� it follows
that ��P�� �� � mod �Z�Hence we can suppose that P� and P� intersect
only in the origin� Thus P� is de
ned by the equations�

y� � a�x� � a�x�

y� � a�x� � a
x��

Using the holomorphic ��� ���form dz� � dz� and ��P�� � � mod �Zwe
obtain that� a��a
 � �� De
ne the orthogonal complex structure J by�

J � �
�x�


� �
�x�

� �
�x�


� � �
�x�

� �
�y�


� � �
�y�

� �
�y�


� �
�y�

�

Clearly both P� and P� are J�complex�
Now suppose that ��P�� � ��P�� � 
 mod �Z� From the equality

���P�� � ��P�� � 
 and the above argument it follows that both P�

and �P� are J�complex� q�e�d�

Remark ���� Suppose X � C � C � that is� suppose X � C � with
the K�ahler form� dz� � dz� � dz� � dz�� Proposition �� remains true�

�� An obstruction to existence

We begin this section by computing the lagrangian angle and the
Maslov form in the simplest situation ! that of a simple closed curve in
R� � C �

Suppose that C is a simple closed curve in C parameterized by�

c � ��� 
� � I � R
����
�

with c��� � c�
�� Let fe� fg be the Frenet frame along c� That is� fe� fg
is an oriented orthonormal frame along c�t� satisfying�

c��t� � jc��t�je�t�
e��t� � ��t�jc��t�jf�t������

Choose a unit vector v � R� and de
ne the angle ��t� by�

cos ���t� �e�t� � v�
sin ���t� � � f�t� � v������
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��t� is well de
ned mod �Zand depends on the choice of the vector
v� However� ���t� is well�de
ned independent of all choices� It is well
known that ��t� is a primitive of the curvature in the sense that�

����t� � ��t�jc��t�j������

The choice of v is equivalent to the choice of a parallel �
� �� form�
dz� of unit length as follows� Given v choose euclidean coordinates �x� y�
such that�

v � �
�x � Jv � �

�y �

and let dz � dx� idy� By ����� we have�

dz�e� � exp�i���������

Since e�t� is the unit tangent space of C at c�t�� it follows from ����
that ��t� is the lagrangian angle along C� Thus we have shown�

Proposition ���� Let C be a simple closed curve in R� � C pa�
rameterized by c � I � C � Let ��t� denote the curvature function of c
and let ��t� be a primitive of the curvature� Then�

	i
 � is the lagrangian angle on C�

	ii
 the Maslov class Mas�c� is represented by the Maslov one�form�

d� � �
���t�jc��t�jdt�

We next consider the computation of the lagrangian angle and the
Maslov class on product tori in R�� R�� Denote the projections onto
the 
rst and second factors of R��R� by �� and ��� respectively� Con�
sider simple closed curves Cj � R� � C � j � 
� �� Suppose that Cj is
parameterized by cj � I � C � Let �j denote the curvature of cj and let
�j denote a primitive of �j � Let �xj � yj� be euclidean coordinates on R��

Then the symplectic forms �� and �� on R� � R��R� are�

�� � dx� � dy� � dx� � dy��
�� � dx� � dy� � dx� � dy��

�����

The product C� � C� � R� is a lagrangian torus without holonomy for
both symplectic forms�
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Proposition ���� On the lagrangian torus

T � � C� � C� � �R��R�� ���

the lagrangian angle is

�� � ��
��� � ��

������� �

The Maslov form is


� � �
�
���

�����t��jc���t��jdt��� ��
�����t��jc���t��jdt���������

Proof� Clear� q�e�d�

For the remainder of the paper we will restrict our attention to
R

� � C � C � That is� we consider C � � C � C equipped with the K�ahler
structure determined by the K�ahler form i

��dz� � dz� � dz� � dz�� and
the euclidean metric� If

z� � x� � iy�� z� � x� � iy��

the symplectic form on C � C is

dx� � dy� � dx� � dy�������

We will henceforth denote this form by ��

Let D� and D� be domains in R� with smooth boundaries� and
let � � D� � D� be an area�preserving di�eomorphism smooth up to
the boundary� Since � is area�preserving� its graph� graph���� is a
lagrangian surface in �R�� ��� Denote by �� the lagrangian angle along
graph���� Consider the lagrangian torus T � � �D� � �D�� as above�
Let �T � denote the lagrangian angle along T �� We have�

Theorem ��	� LetD� and D� be domains inR� with smooth bound�
aries and � � D� � D� an area�preserving di�eomorphism smooth up to
the boundary� Then at each point �p� ��p��� p � �D�� of the boundary
of graph��� �

���p� ��p�� �� �T ��p� ��p�� in R�Z����
��

Proof� Suppose� to the contrary� that there is a point �p� ��p���
p � �D� such that ���p� ��p��� �T ��p� ��p�� modZ�By Proposition ��
and Remark 
�� this implies that there is an orthogonal complex struc�
ture J on R� such that� the �unoriented� tangent planes of graph��� and
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T � at �p� ��p�� are J�complex lines� But these ��planes intersect in a
real line� Since they are J�complex they must coincide� Thus the graph
of � is tangent to T � at �p� ��p�� and so � cannot be a di�eomorphism
at p� This contradiction establishes the theorem� q�e�d�

Let � � D� � D� be any orientation�preserving di�eomorphism
smooth up to the boundary� The boundary trace of � determines a
smooth �
� 
� curve� �� on T � satisfying hMas�T ��� �i � �� It follows
from Corollary 
���ii� that along � the lagrangian angle �T � is a smooth
function with values in R� well de
ned up to normalization�

De�nition ���� The variation of �� denoted variation���� is�

variation��� � sup
x�y��

j�T ��x�� �T ��y�j����

�

Note that the di�erence �T ��x� � �T ��y�� for x� y � �� is well de
ned
independent of choice of normalization�

Let A�D�� D�� denote the set of area�preserving di�eomorphisms
D� � D� smooth up to the boundary�

De�nition ���� The variationA of the pair �D�� D��� denoted
variationA�D�� D��� is�

variationA�D�� D�� � inf��A�D��D��variation�������
��

Let D�D�� D�� denote the set of orientation preserving di�eomor�
phisms D� � D� smooth up to the boundary�

De�nition ��	� The variationD of the pair �D�� D��� denoted
variationD�D�� D��� is�

variationD�D�� D�� � inf��D�D��D��variation�������
��

Lemma ���� If D� and D� are domains of equal area with smooth
boundaries then�

variationA�D�� D�� � variationD�D�� D���

Proof� Clearly�

variationA�D�� D�� � variationD�D�� D���

On the other hand� by Theorem 
 of Dacorogna�Moser ���� given any
�	 � D�D�� D�� there is an area�preserving di�eomorphism � � A�D�� D��
with � � �	 on �D�� q�e�d�

Because of the lemma we can denote both variationA and variationD
by variation�



��� jon g� wolfson

Theorem ���� LetD� and D� be domains inR� with smooth bound�
aries and equal areas� Suppose that�

variation�D�� D�� � 
�

Then there are no minimal lagrangian di�eomorphisms � � D� � D�

smooth up to the boundary�

Proof� Suppose such a di�eomorphism � � D� � D� exists� Then
graph��� is a minimal lagrangian surface in �R�� �� and so �� is constant
on graph���� On the other hand since variation�D�� D�� � 
� it follows
that variation���� 
� Thus� along the boundary of graph���� �T � as�
sumes every value in R�Z�Therefore there is at least one point �p� ��p���
p � �D�� such that�

�T ��p� ��p�� � �� in R�Z�

The result now follows from Theorem ���� q�e�d�

Remark ���� We included Proposition ��� in this section because it
shows that the computation of variation�D�� D�� reduces to comparing
the primitive of the curvature of �D� to the primitive of the curvature
of �D�� Consequently� it is easy to construct pairs of domains �D�� D��
with equal areas and with variation�D�� D�� � 
� On the other hand
note that variation�D�D� � � for any domain D� Thus�if �D� is close
to �D� in C� then� by continuity� variation�D�� D�� � 
� Also� again
using Proposition ���� it follows that if both D� and D� are convex� then
variation�D�� D�� � 
�

For use later in the paper we record�

Theorem ���� Let Cj� j � 
� �� be simple closed curves in R� with
curvature functions �j � j � 
� �� Let � � C� � C� be a di�eomorphism�
Suppose that Cj � j � 
 or j � �� is strictly convex 	i�e�� one of �� 	 �
or �� 	 � 
� Then�

length�graph���� � B�

where B depends on the Maslov class of T � � C� � C� and on the
curvatures �j � j � 
� �� but is independent of ��

Proof� Suppose 
rst that C� is strictly convex� The Maslov class�
Mas�T ��� of T � � C� � C� pairs with any class � � H��T ��Z� to de�
termine an integer hMas�T ��� �i� In particular� if � is the �
� 
� class in
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H��T
��Z�� then � can be represented by the graph of �� Hence� we can

compute hMas�T ��� �i by

hMas�T ��� �i�
Z
graph �


�����
��

where 
� is the Maslov form given by ����� Let c� � I � R� be the
parameterization of C� by arclength� The curve determined by graph �
can be parameterized by�

c � I � R
����
��

t 
� �c��t�� ��c��t����

Thus�

Z
graph �


� �

Z
c�I�


�

� �
�

Z
I

���t�dt� �
�

Z
I

���t�j�� � c����t�jdt���
��

� �� �
�

Z
I

���t�j���c��t��jjc���t�jdt�

where the 
rst term of the last line is due to the �Umlaufsatz�� Hence�
since �� 	 �� ���� and ���
�� imply

���
 �

Z
I

j���c��t��jjc���t�jdt � A�

where A is independent of �� It follows then from ���
 � that length
�c� � B� as required�

If� on the other hand� C� is strictly convex� then apply the above
argument to ��� � C� � C�� Since graph ��� � graph ����� the result
follows� q�e�d�

	� Minimal lagrangian di
eomorphisms� local theory

Let Di� i � 
� �� be domains in R� with smooth boundary� Let
ri� i � 
� �� be C� de
ning functions R�� R such that�

�i� Di � f�s� t� � R� � ri�s� t� � �g�
�ii� �grad ri�j�Di

�� ��
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Suppose that � � D� � D� is a minimal lagrangian di�eomorphism
smooth up to the boundary� Let �x� y� be euclidean coordinates on D�

and �u� v� be euclidean coordinates on D�� Then

��x� y� ��u�x� y�� v�x� y���

r��u�x� y�� v�x� y�� �� whenever r��x� y� � ��
���
�

Since � is area�preserving� we have

uxvy � uyvx � 
������

Since the graph of � is a minimal surface� the surface

�x� y�
f�
� �x� y� u�x� y�� v�x� y�������

is a minimal lagrangian surface in �R�� dx � dy � du � dv�� Hence the
lagrangian angle � is constant along �����

We compute � as follows� Let z� � x � iy and z� � u � iv� Then
dz� � d "z� is a parallel section of the canonical line bundle K over R� �
C � "C � Thus�

f�
��dz� � d "z�� ��dx� idy�� �du� idv�

���uy � vx�� i�ux � vy��dx� dy�
�����

From ���� we have�

��ux � vy�

uy � vx
� tan����������

Therefore� � is constant along ���� if and only if

uy � vx � ��ux� vy�������

where � � � cot���� is a constant�

Proposition 	��� The map � � �u� v� � D� � D� is a minimal
lagrangian di�eomorphism if and only if on D��

uxvy � uyvx � 
�

uy � vx � ��ux� vy����� �

r��u� v� � � if r��x� y� � �

for some constant ��
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Proof� We have already shown that if � is a minimal lagrangian
di�eomorphism� then ��� � holds� Conversely� the 
rst equation of ��� �
shows that � is a di�eomorphism and is area�preserving� The second
equation shows that � has a minimal graph� q�e�d�

Consider a family D��t�� t � ��� � � � � 	 �� of domains in R� with
smooth boundary� Suppose that�

�i� D���� � D��

�ii� r��t�� t � ��� � � �� are de
ning functions for D��t� that depend
smoothly on t�

Suppose� for t � �� there is a minimal lagrangian di�eomorphism �	 �
D� � D����� That is� suppose at t � �� there is a solution of ��� �
and consider the question of the existence of solutions to ��� � for t
near �� We observe that there are no solutions to ��� � for t �� � unless
area�D��t�� � area�D���We can� however� allow the area of the domains
D��t� to vary if we replace the system ��� � by the somewhat more
general system�

uxvy � uyvx � a�t��

uy � vx � ��t��ux � vy�������

r��t��u� v� � � if r��x� y� � ��

where

a�t� �
area�D��t��

area�D��
� a��� � 
�

We recover ��� � when area�D��t�� � area�D��� For the remainder of this
section we suppose that we have a solution �u� v� of ����� at t � �� and
consider the existence of solutions to ����� for t near �� For notational
convenience we set�

x� � x� x� � �y�
The linearization of the system ����� at �u� v� is then��� �vx� ux�

vx� � ux� ��ux� � vx��

�
�
�x�

�����

�
�

vx� �ux�
ux� � vx� ��ux� � vx��

�
�
�x�

��
#u
#v

�
�

�
#a

#��ux� � vx��
�

�
�

The linearized boundary condition is�

�rr�� � � #u� #v� � � #r��u� v� on �D�����
��
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Proposition 	��� Let ���� ��� be isothermal coordinates for the met�
ric induced by f�� The linear boundary system 	��
� 	��
 is equivalent
to the linear boundary system

U	� � V	� �A��U �A��V �#a f�� � #� f���

V	� � U	� �A��U �A��V �#a f�� � #� f���
���

�

RU � SV � � #r� on �D����
��

for some C� functions fjk � j� k � 
� �� on D�� where R and S are C�

functions on �D� which satisfy�

	i
 The vector �R� S� � R� is everywhere non�zero along �D��

	ii
 The smooth map S� � �D� � R� n f�g determined by �R� S�
has winding number �
 with respect to the orientations given by
���� ��� and �U� V � on R��

Proof� Left to the reader q�e�d�

Set

P �U� V �

� �U	� � V	� � A��U � A��V� V	� � U	� � A��U � A��V �

B�U� V �

� RU � SV on �D��

���
��

Theorem 	�	� The linear boundary system 	��
� 	��
 is elliptic 	in
the sense of H�ormander ��� x�
���
 and hence the operator �P �U� V �� B�U� V ��
is Fredholm on suitable Sobolev spaces�

Proof� The fact that ���� is elliptic is clear� It is then a straightfor�
ward computation to show that at a boundary point p � �D� the bound�
ary condition ���� is elliptic if �and only if� the vector �R� S��p� �� ��
The result follows� q�e�d�

To compute the index of �P �U� V �� B�U� V �� we 
rst simplify the
problem by making a conformal di�eomorphism D � D�� where D is
the unit disc in R�� and transforming �P �U� V �� B�U� V �� by this map�
Since the transformation is conformal� the form of �P �U� V �� B�U� V ��
remains unchanged� Set�

W � U � iV� � � �� � i���

A� � �
��A�� � iA�� � A�� � iA�������
��

A� � �
��A�� � iA�� � A�� � A����



minimal lagrangian diffeomorphisms ���

Then P �U� V � can be written as

P �W � �
�W

� "�
�A�W � A�W����
��

Set� ei
 �
�R� iS�p
R� � S�

on �D� Then we can write B�U� V � as

B�W � � Re�ei
 �W �����
��

Theorem 	��� The Riemann�Hilbert boundary system

�W

� "�
�A�W � A�W � #aF� � #�F� on D

Re�ei
 �W � �
� #r�p
R� � S�

on �D�

���
 �

has index � �
� where Fj � �
��f�j � if�j�� j � 
� �� The kernel of the

system is zero and therefore the dimension of the cokernel is one�

Proof� Let $ arg denote the change in the argument around �D�
Then it is well known ��� that the index of Riemann�Hilbert boundary
systems is given by�

index � 
� 


�
$arg�ei
�����
��

The winding number of �R� S� considered as a map S� � �D� � R�nf�g
is �
� Since $ arg�ei
� � $arg�R� iS�� we have $ arg�ei
� � ��� The
results on the kernel and cokernel are also standard ���� q�e�d�

We conclude that the boundary system ����� ���� also has index
� �
� zero kernel and cokernel of dimension equal to one�

Since the cokernel has dimension one� there is one condition on the
right�hand side of ����� that is both necessary and su�cient for the
existence of a solution of ����� To express this condition consider the
adjoint operator to the boundary system ����� ����� Following ��� the
adjoint operator is�

P ��Z� �
�Z

� "�
� A�Z �A�Z�

B��Z� �Re��ie�i
 d�
ds
Z�

��
�D
�

���
��
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Proposition 	��� The necessary and su�cient condition for the
existence of a smooth solution of 	��
 is that

I
�D

#r�p
R� � S�

Im�ie�i

d�

ds
Z�ds

� i

ZZ
D

f�� #aF� � #�F��Z � � #aF � � #�F ��Zgd��d��������

for all solutions Z of P ��Z� � �� B��Z� � ��

Proof� See ��� Chapter 
� q�e�d�

The adjoint system ���� has one�dimensional kernel� Thus for ����
to have a �unique� solution� � #aF� � #�F��

� �r�p
R��S�

� must satisfy the one

condition imposed by ����� It is clear that there is a unique value of the
constant #� �depending on F�� F�� #a� #r� and the boundary system �����
such that ���� is satis
ed�

Theorem 	��� There is one 	and only one
 value of the constant #�
	depending on �u� v� and their derivatives� rr�� #r� and #a
 such that the
linear boundary system 	���
� 	���

 has a unique smooth solution on
D��

Returning to the question of 
nding solutions of ����� for t near �
we have�

Theorem 	��� There is an � 	 � such that if jtj � �� then there is
a smooth solution of 	���
 on D��

Proof� The result follows from Theorem ��� the inverse function
theorem for Banach spaces and standard elliptic regularity results� We
leave the details to the reader� q�e�d�

Applying the theorem to the case where area�D��t�� � area�D�� we
have�

Corollary 	�
� There is an � 	 � such that if jtj � �� then there is
a minimal lagrangian di�eomorphism �t � D� � D��t��

Remark 	��� The constant #� which occurs in Theorem �� and
throughout this section has a geometric interpretation� To understand
this we 
rst describe the space of orthogonal complex structures on R��
Let f �

�x�
� �
�y�

� �
�x�

� �
�y�

g be an orthonormal frame on R� � R�� R�� In
terms of this frame we de
ne three complex structures Jk � k � 
� �� ��
as follows�
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J� �
�
�x�


� �
�y�

� �
�y�


� � �
�x�

� �
�x�


� � �
�y�

� �
�y�


� �
�x�

�

J� �
�
�x�


� �
�y�

� �
�y�


� � �
�x�

� �
�y�


� � �
�x�

� �
�x�


� �
�y�

�

J
 �
�
�x�


� � �
�x�

� �
�x�


� �
�x�

� �
�y�


� � �
�y�

� �
�y�


� �
�y�

�

����
�

Note that J� is the �standard� complex structure on C � "C � R��
The space of all orthogonal complex structures onR� forms a two�sphere
given by�

J � fa�J� � a�J� � a
J
 � ak � R� a�� � a�� � a�
 � 
g�
If J� is the �north pole� of this two�sphere� then �J� is the �south pole�
and the equator is given by�

J	 � fa�J� � a
J
 � a
�
� � a�
 � 
g � J �

The symplectic form �� determined by J� and the euclidean metric�
is � � dx� � dy� � dx� � dy�� Let � � D� � D� be a minimal lagrangian
di�eomorphism� Then the surface S � graph��� is both minimal and
��lagrangian� In particular� it is ��lagrangian with constant lagrangian
angle �� We have�

Proposition 	��� S � graph��� is a J�complex curve� for J �
a�J� � a
J
 � J	� where a� � sin����� a
 � cos����� In particular�
� � �a�

a�
�

Proof� The tangent space� T�S� of S is spanned by�

X � �
�x�

� ux
�

�x�
� vx

�
�y�

�

Y � �
�y�

� uy
�
�x�

� vy
�
�y�

�

Using ����
� and the equation uxvy�uyvx � 
 we have that span�X� Y �
is J � a�J� � a
J
 invariant if and only if� a
�ux � vy� � a��vx � uy��
Hence� from ����� it follows that� � � �a�

a�
� Therefore� a� � sin�����

a
 � cos����� q�e�d�

Consider a family of minimal lagrangian di�eomorphisms �t � D� �
D��t� withD� andD��t� as described above� Then the surfaces graph��t�
are Jt�complex for Jt � J	� The family fJtg is determined by the func�
tions ��t� and hence by the functions ��t�� Since #� is the derivative of
� with respect to t� we see that the local existence problem for mini�
mal lagrangian di�eomorphisms is solvable because the set of complex
structures J	 is one�dimensional� This parameter allows the cokernel
condition ���� to be satis
ed�
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�� The Monge�Amp�ere equation and an a priori estimate

Recall the formulation of the equations of a minimal lagrangian dif�
feomorphism � given in ��� ��

�a� uxvy � uyvx � 
�
�b� sin�����uy � vx� � � cos�����ux � vy��

r��u� v� � � if r��x� y� � ��
���
�

where the lagrangian angle � is constant� Given the minimal lagrangian
di�eomorphism � we can compute the lagrangian angle along its graph
using any parallel unit ��� �� form �� Choosing � � ei��dz� � d"z� gives�
for di�erent choices of �� di�erent values of � in ����� Thus we can take
for � in ���� any constant we choose� In particular� choose�

� � �
� ������

Then ���� becomes�

�a� uxvy � uyvx � 
�
�b� uy � vx�

r��u� v� � � if r��x� y� � ��
�����

Since D� is simply connected� from ���b�� it follows that there is a
smooth real�valued function w on D� such that�

wx � u� wy � v������

It is then easy to verify that ���a� becomes�

wxxwyy � �wxy�
� � 
������

A solution of ���
� thus yields a convex function w on D� satisfying the
Monge�Amp�ere equation ����� such that rw de
nes a di�eomorphism
D� � D�� That is� a solution of ���
� gives a solution of the the second
boundary�value problem for the Monge�Amp�ere equation for the domains
�D�� D���

It is clear from ���
� that the gradient of a solution of the sec�
ond boundary�value problem for the domains �D�� D�� is a minimal
lagrangian di�eomorphism D� � D�� Thus from Theorem �� we have�

Theorem ���� Let �D�� D�� be a pair of domains in R� with smooth
boundaries and equal areas� If

variation�D�� D�� � 
������

then there is no regular solution of the second boundary�value problem
for the Monge�Amp�ere equation�
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The regularity of the solution of the second boundary�value problem
has not been extensively investigated without convexity assumptions on
both domains� However Ca�arelli ��� has given an example of a noncon�
vex domain in R� with unit area such that there is no regular solution
of ����� whose gradient de
nes a di�eomorphism from the unit disc into
this domain� He remarks that the conditions needed on the domains
to insure regularity are of a geometrical rather than a topological or
di�erential nature� Using Proposition ��� it is not di�cult to verify
that Ca�arelli�s example satis
es ������ In light of this the following
questions are appropriate�

Question� Let �D�� D�� be a pair of domains in R� with smooth
boundaries and equal areas� satisfying

variation�D�� D�� � 
�

Does there exist a minimal lagrangian di�eomorphism � � D� � D�

smooth up to the boundary% Equivalently� does there exist a smooth
solution of the second boundary�value problem for the Monge�Amp�ere
equation%

The work of Delano�e ��� and Ca�arelli ��� ��� gives an a�rmative
answer to both questions in case both domains are strictly convex� The
remainder of this paper is devoted to giving a more complete answer
though� in general� the questions remain open�

The system ���
� can be interpreted in yet another way� We have
already shown� in the notation of Remark ���� that a minimal lagrangian
di�eomorphism � has a graph which is J�complex for some J � J	�
Thus the map�

f� � �D�� �D�� � �R�� T ���
�x� y� 
� �x� y� ��x� y���

��� �

is minimal with image a J�holomorphic curve� Let D denote the unit
disc in R� centered at the origin� Consider D� with the conformal
structure determined by the metric induced by f�� Let � � D � D� be
a conformal di�eomorphism�

Lemma ���� The map

F� � f� � � � �D� �D�� �R�� T ��

is J�holomorphic�
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Proof� Left to the reader� q�e�d�

The maps f� and F� have some interesting and useful properties�

Proposition ��	� If f� is the minimal map in 	���
� and one of
the domains Di� i � 
� �� is strictly convex� then area�f�� � A where
A depends on the geometry of �D� and �D�� but is independent of f��

Proof� This follows from the isoperimetric inequality for minimal
discs in Rn and Theorem �� q�e�d�

Let ri be a de
ning function for Di� i � 
� �� That is� suppose

Di � f�s� t� � R� � ri�s� t� � �g������

and rri �� � along �Di� Consider the hessian of ri� Hess�ri�� on Di� Let
�i denote the minimum value of the eigenvalues of Hess�ri� on Di�

De�nition ���� We say the pair �r�� r�� is pseudoconvex if�

�� � �� 	 �������

De�nition ���� We say the pair �D�� D�� is pseudoconvex if the
domains admit a pair of pseudoconvex de
ning functions�

Proposition ���� Let �i denote the curvature of �Di in R�� The
pair �D�� D�� is pseudoconvex if and only if

min
�D�

�� � min
�D�

�� 	 ��

Proof� Left to the reader� q�e�d�

We justify the use of the term pseudoconvex as follows� Let �D�� D��
be a pair of domains with de
ning functions �r�� r��� Set

r � R�� R�
r�x�� y�� x�� y�� � r��x�� y�� � r��x�� y���

���
��

Proposition ���� If �r�� r�� is pseudoconvex� then for every J � J	

the function r is strictly J�pseudoconvex in an open neighborhood of the
domain D� �D� � R��

Proof� Recall the complex structures Jk � k � 
� �� �� and the descrip�
tion of the space of all orthogonal complex structures J on R� given in
Remark ������ A unitary frame of the Jk � i�eigenspace is given by�
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J� � f �
�z�

� �p
�
� �
�x�

� i �
�y�

�� �
�z�

� �p
�
� �
�x�

� i �
�y�

�g�
J� � f �p

�
� �
�x�

� i �
�y�

�� �p
�
� �
�y�

� i �
�x�

�g�
J
 � f �p

�
� �
�x�

� i �
�x�

�� �p
�
� �
�y�

� i �
�y�

�g�

Let J � a�J��a
J
 � J	 be a complex structure where a�
��a


� � 
�
A straightforward computation shows that a unitary frame of the J � i�
eigenspace is given by�

�
�	�

� �p
�
� �
�x�

� ia

�
�x�

� ia�
�
�y�

��

�
�	�

� �p
�
� �
�y�

� ia�
�

�x�
� ia


�
�y�

��

r is a strictly J�pseudoconvex function if

X
��k

��r

���� "�k
��"�k 	 � for ���� ��� �� ��� ������

�

We have�

X
��k

��r

���� "�k
��"�k �

X
��k

��r�

���� "�k
��"�k �

X
��k

��r�

���� "�k
��"�k �

�


�
��� � ����j��j� � j��j���

���
��

where the �i denote the minimum value of the eigenvalues of Hess�ri�
on Di� The result follows� q�e�d�

Suppose that the pair �D�� D�� is pseudoconvex with pseudoconvex
de
ning functions �r�� r��� Suppose further that � � D� � D� is a min�
imal lagrangian di�eomorphism with minimal map f� � �D�� �D�� �
�R�� T ��� Using Proposition ��� we have that r � r� � r� is strictly
J�pseudoconvex near D� �D�� By perturbing r� if necessary� outside
a neighborhood of D� � D� we can suppose without loss of generality
that r����� is a smooth compact strictly J�pseudoconvex hypersurface
containing T � � �D� � �D� and bounding a J�pseudoconvex domain
W � R�� Moreover we can suppose that rrj�W is everywhere nonzero
and outward pointing�

As above� let D be the unit disc in R� centered at the origin� The
next proposition and its corollary use the pseudoconvexity of r�
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Proposition ���� If h � �D� �D� � �W�T �� is a J�holomorphic
map and h � C��D�� then the image of the interior of D lies in the
interior of W and� for every x � �D�

�rr � �h
��

��x� 	 ��

where �h
��
�x� is the normal derivative of h at x�

Proof� Follows from the J�pseudoconvexity of r and the Hopf bound�
ary point lemma� q�e�d�

Corollary ���� If h � �D� �D�� �W�T �� is a J�holomorphic map
in C��D�� then the boundary curve of h lies in the set of totally real
points of T ��

Proof� Let x � �D� Suppose that h�x� is a complex tangent point�
i�e�� Th�x��T

�� is a complex line� Since h��TxD� is a complex line and
h��TxD� and Th�x��T

�� intersect in the real line h��Tx��D��� they must

coincide� Hence �h
�� �x� is tangent to T

� � �W � contradicting the previ�
ous proposition� q�e�d�

The corollary applied to the J�holomorphic map F� shows that the
boundary trace of f� �or �� misses the J�complex tangent points on T ��

The next theorem is a re
ned version of Proposition ����

Theorem ��
� Suppose that �D�� D�� is pseudoconvex with pseu�
doconvex de�ning functions �r�� r��� Let � � D� � D� be a minimal
lagrangian di�eomorphism� Set f� � id�� � D� � R

� and r � r�� r��
Then there is a constant c 	 � depending on �D�� D��� but independent
of �� such that at any point on �D� �

rr � �f�
���

� c 	 ��

where �
���

denotes the normal derivative on �D��

Proof� Suppose that � is chosen �as in ������ such that the equa�
tions for the minimal lagrangian di�eomorphism � become the Monge�
Amp�ere equation for the convex function w on D�� Set

x� � x� x� � y�

Then w satis
es�

wx� � u� wx� � v����
��
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wx�x�wx�x� � �wx�x��
� � 
����
��

For brevity of notation write wxi � wi� wxixj � wij � etc� Set�

�wij� � �wij�
���

Di�erentiating ���
�� with respect to xk we get�

X
i�j

wijwijk � �����
��

Consider the function R on D� given by�

R � r��x�� x�� � r��u� v�����
��

For any a � ����� consider R � ar� on D� and computeP
i�j w

ij�R� ar��ij �

X
i�j

wij�R� ar��ij

�
X
i�j

wij�r��w�� w�� � �
� a�r��x�� x���ij

�
X
i�j

�wij�r��ij � �
� a�wij�r��ij����
 �

�
X
i�j

wij�det��r��ij��r��
ij � �
� a��r��ij��

The second equality follows from ���
��� The eigenvalues of the matrix

det��r��ij��r��
ij

are the same as those of the matrix �r��ij � Hess�r��� Because the pair
�r�� r�� is pseudoconvex� there is some a 	 � such that both eigenvalues
of the matrix�

det��r��ij��r��
ij � �
� a��r��ij

are positive� Since wij is positive de
nite� it follows from ���
 � that

X
i�j

wij�R� ar��ij 	 �����
��
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Clearly� R� ar� � � on �D�� Thus by the Hopf maximum principle at
any point of �D��

�R

���
	 a

�r�
���

� c 	 �����
��

From ���� we have R � r � f� � The result follows� q�e�d�

Suppose that � � D� � D� is a minimal lagrangian di�eomorphism�
Then ��� � D� � D� is also� Let p � �D�� q � ��p� � �D��

Lemma ���� If j ��
���

�p�j � 
� then j�������
�q�j � 
 and conversely�

where �
��i

is the normal derivative along �Di�

Proof� Choose euclidean coordinates �x� y� such that at p � �D��

�
�x � unit normal to �D��
�
�y

� unit tangent to �D��

At q � �D� choose euclidean coordinates �u� v� such that�

�
�u � unit normal to �D��
�
�v � unit tangent to �D��

With respect to these coordinates ��x� y� � �u� v� satis
es ����� In
particular�

uxvy � uyvx � 
�������

�Equivalently� ����u� v� � �x� y� satis
es xuyv �xvyu � 
�� The bound�
ary condition implies�

uy�p� � ������
�

Using ���b� it follows that�

vx�p� � ��������

�Equivalently� yu�q� � ��� Thus combining ���� and ���� gives�

ux�p�vy�p� � 
�������

�Equivalently� xu�q�yv�q� � 
�� Since � and ��� are inverses their Ja�
cobian matrices satisfy�

�
vy �vx

�uy ux

�
�p� �

�
ux vx
uy vy

���
�p� �

�
xu yu
xv yv

�
�q��������
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Using ���� and ���� we have�

��

���
�p� �

�

�x
�u� v��p� � �ux� vx��p� � �ux�p�� ���

����

���
�q� �

�

�u
�x� y��q� � �xu�q�� �� � �vy�p�� ���

Hence� by �����

j ��
���

�p�jj��
��

���
�q�j � 
�������

The result follows� q�e�d�

Consider the maps f� � id � � � D� � R
� and

f��� � ��� � id � D� � R
��

Clearly they have the same graphs� Moreover�

j�f�
���

j� � 
 � j ��
���

j��

j�f���
���

j� � j��
��

���
j� � 
�

Hence if q � ��p� then� by the lemma�

if j�f�
���

�p�j� � � then j�f���
���

�q�j� � ��������

and conversely� Therefore we have�

Proposition ����� Let �p� q� � �D� � �D� with q � ��p�� Let
��p� q� be the angle between the planes T�p�q��T

�� and

�f���Tp�D�� � �f�����Tq�D���

Then

��p� q� � � 	 ��

where � depends on jrrj and the geometry of �Di but is independent of
� and the point �p� q��
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Proof� By Theorem ��� we have at �p� q� � T ��

jrrjj�f�
���

j cos � � rr � �f�
���

� c�

where � is the angle between rr and
�f�
���

� We can suppose that

j�f�
���

�p�j �
p
��

since otherwise we consider
�f

���

���
�q� � Thus�

cos � � cp
�jrrj 	 ��

This implies that the angle � satis
es�

� � � �
�

�
� ��

where � 	 � depends on c and jrrj� Since rr is normal to T�p�q��T
���

the angle between T�p�q��T
�� and f��Tp�D�� is � �� q�e�d�

Theorem ����� Let �D�� D�� be a pseudoconvex pair and let � �
D� � D� be a minimal lagrangian di�eomorphism smooth up to the
boundary� Let J � J	 denote the complex structure such that graph ���
is J�holomorphic� Then the distance between the boundary trace of �
on T � � �D���D� and the J�complex tangent points on T � is bounded
away from zero by a constant depending on jrrj and the geometry of
�D� and �D� but independent of � and J�

Proof� Fix J � J	 and consider the set of minimal lagrangian dif�
feomorphisms�

SJ � f� � D� � D� � graph��� is J � holomorphicg�
Suppose the boundary traces of di�eomorphisms � � SJ are not bounded
away from the complex tangent points of J � Then there is a sequence
f��g of maps in SJ with boundary trace approaching a J�complex tan�
gent point� x � T �� In particular on each boundary trace there is a
point x� � T � with x� � x� Denote the tangent space to graph��� at
x� by Px� � For each �� the ��plane Px� intersects the ��plane Tx� �T

��
in a real line Lx� � Since Px� is a J�complex line�

Px� � Lx� � JLx� ����� �
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Because x is a J�complex tangent point� as x� � x the distance be�
tween Tx� �T

�� and Lx� � JLx� goes to zero� Hence� by ����� Tx��T
��

becomes arbitrarily close to Px� � This contradicts Proposition ��� Thus
the boundary traces of di�eomorphisms � � SJ are bounded away
from the J�complex tangent points on T � by a bound depending on
J� jrrj� �D� and �D��

Now repeat this argument for each J � J	� Since J	 is compact the
result follows� q�e�d�

�� Existence� the continuity method

In this section we prove�

Theorem ���� Let �D�� D�� be a pseudoconvex pair of domains
with smooth boundaries� satisfying area�D�� � area�D��� Then there
is an area�preserving di�eomorphism � � D� � D�� smooth up to the
boundary with graph a minimal surface in R� � C ��

Corollary ���� Let �D�� D�� be a pseudoconvex pair of domains
with smooth boundaries� satisfying area�D�� � area�D��� Then there is
a smooth solution of the second boundary value problem for the Monge�
Amp�ere equation� That is� there is a smooth function w satisfying�

wxxwyy � �wxy�
� � 


such that the gradient of w� rw� de�nes a di�eomorphism

�D�� �D��� �D�� �D���

The proof of the theorem uses the continuity method as follows�
Since �D�� D�� is a pseudoconvex pair� at least one of the domains is
strictly convex� Without loss of generality we can suppose that D�

is strictly convex with strictly convex de
ning function r�� Let D��t��
� � t � 
 be a smooth �in t� family of domains in R� with smooth
boundary and with de
ning functions r��t�� � � t � 
� satisfying the
following�

�i� For each t�the pair �D�� D��t�� is pseudoconvex and area �D��t�� �
area �D���

�ii� For each t� the functions r��t� vary smoothly in t and the pair
�r�� r��t�� is pseudoconvex�
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�iii� D���� � D� and D��
� � D��

For each t we seek an area�preserving di�eomorphism �t � D� � D��t�
smooth up to the boundary whose graph is a minimal surface� The �t

are minimal lagrangian di�eomorphisms� Clearly� when t � � we can
take �	 � id� The continuity method requires we show that the set of
t� such that �t exists� is both open and closed� This shown� it follows
that �� � D� � D� exists and this proves the theorem�

Openness� Openness follows immediately from the �inverse func�
tion theorem� Corollary ���

Closedness� We show that the set of t� for which there exists a
minimal lagrangian di�eomorphism �t � D� � D��t� �smooth up to the
boundary�� is closed� To do this we suppose that for each t � t	 there
is a minimal lagrangian di�eomorphism �t � D� � D��t� depending
continuously on t� We must show that there is a minimal lagrangian
di�eomorphism �t� � D� � D��t	��

For each t� the �t determine smooth maps ft � id� �t�

ft � D� � R
��R� � R�����
�

The ft are minimal lagrangian maps� Recall that Proposition ��� shows
that there is a constant A�t� depending only on the geometry of the
domains D� and D��t� such that for each area�ft� � A�t�� Setting A �
sup	�t��A�t�� we have for all t

area�ft� � A������

Let�

rt�x� y� u� v� � r��x� y� � r��t��u� v�������

T ��t� � �D� � �D��t�������

Then� for each t� rt is strictly J�pseudoconvex in a neighborhood of
T ��t� for all J � J	� As in x� we can� by perturbing� assume that�
for each t� rt is strictly J�pseudoconvex and that r��t ��� is a strictly
J�pseudoconvex hypersurface containing T ��t��

The maps ft� de
ned in ���
�� are minimal lagrangian maps� and so
there is an orthogonal complex structure� Jt � J	� such that image�ft�
is a Jt�holomorphic curve� The boundary trace of ft coincides with the
boundary trace of �t� Hence by Theorem ��

� for each t� the distance
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between the boundary trace of ft and the Jt complex tangent points
of T ��t� is bounded away from zero by a constant depending only on
rt� �D� and �D��t�� Using the compactness of ��� 
� we can assume this
constant to be independent of t� We now conformally reparameterize
each map ft to construct Jt�holomorphic maps from D� the unit disc
centered at the origin into R��

Ft � �D� �D�� �R�� T ��t���

By choosing an appropriate conformal reparameterization we can sup�
pose that for each t �

��� rt�Ft���� � �
�

Since the image of Ft is the same as the image of ft� the distance between
the boundary trace of Ft and the Jt�complex tangent points of T ��t� is
bounded away from zero by a constant independent of Ft and t� Since
the reparameterization is conformal�

area�Ft� � area�ft��

Hence�

area�Ft� � A������

For each t� the complex structure Jt is an element in J	� Thus we can
choose a subsequence of the ftg that we denote ft�g such that the
Jt� converge smoothly to an orthogonal complex structure Jt� � J	�
Consider the sequence� fFt�g� of Jt� �holomorphic maps�

Theorem ��	� For any k � 
� there is a subsequence of fFt�g
	which we still denote fFt�g
 which converges in Ck�D� to a Jt��holo�
morphic map

Ft� � �D� �D�� �R�� T ��t	���

The boundary of Ft� is a smooth �
� 
� curve on the torus

T ��t	� � �D� � �D��t	��

Proof� Since the boundary trace of the maps Ft� lie in the totally
real points of the surface T ��t��� the maps satisfy elliptic boundary
conditions� Further� since the boundary trace are uniformly bounded
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away from the complex tangent points� the boundary conditions are
uniformly elliptic� Hence we have the standard uniform boundary esti�
mates for J�holomorphic maps as in Floer ���� In the interior we have
the standard interior elliptic estimates for J�holomorphic maps as in
��� or ���� The condition ��� insures that the reparameterization group
is compact� Combining these estimates with the uniform area bound
����� it follows that a subsequence of the maps Ft� converges in Ck to
a Jt� holomorphic map Ft� up to �bubbling� �see for example �����

We next show that there is no bubbling� Interior bubbling gives
nontrivial Jt� holomorphic ��spheres in R�� This is clearly impossible�
Hence in the interior the convergence is Ck� Recall that the boundary
trace of the holomorphic maps Ft� are uniformly bounded away from
the complex tangent points of the surface T ��t��� These surfaces lie in
the strictly Jt��pseudoconvex hypersurfaces r��t�

���� Bedford�Gaveau
��� derive uniform Lipshitz estimates on the maps at the boundary in
this setting� �Actually in their setting the complex structure and pseu�
doconvex hypersurface are 
xed but their argument works here without
change� See Eliashberg ��� for a concise account of these estimates��
Such uniform Lipshitz estimates imply that bubbling at the boundary
cannot occur� Hence at the boundary the convergence is Ck � The result
follows� q�e�d�

Proposition ���� S	 � image�Ft�� is a smooth embedded disc in
R

� that meets the torus T ��t	� smoothly� Moreover� it is a minimal
lagrangian surface�

Proof� For each t� the hypersurface r��t ��� � �Wt contains a ��plane
distribution� denoted �t� consisting of the Jt�complex lines� The inter�
section of �t with the surface T ��t� de
nes on T ��t� an orientable line

eld� called the characteristic line 
eld� with singularities at the com�
plex tangent points of T ��t�� The boundaries of Jt�holomorphic discs
are transversal to the characteristic line 
eld� Using the strict pseudo�
convexity of �Wt and the fact that the boundaries of the holomorphic
discs are bounded away from the complex tangent points� it follows that
the angle between the boundary curve of a holomorphic disc and the
characteristic line 
eld is uniformly bounded away from zero �see ���
for more details�� Hence the limit of the embedded boundary curves
is embedded� and the limit holomorphic map� Ft� � is nonsingular along
the boundary� �D� of its domain�

By Theorem ��� we have a family fFt � � � t � t	g of Jt�holomorphic
maps depending continuously on t� For each t we let Sing�Ft� denote
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the number of singularities of Ft in D counted according to multiplicity�
�An ordinary double point contributes one to this number�� The above
argument shows that Ft� is nonsingular near the boundary� All other
maps of the family are nonsingular near the boundary by hypothesis�
From the adjunction formula �see McDu� ��� for more details� it thus
follows that if � � t�� t� � t	� then

Sing�Ft�� � Sing�Ft���

Since for t � t	� the maps Ft are nonsingular� we have�

Sing�Ft�� � ��

Therefore� Ft� is nonsingular�
The last statement of the proposition follows since S	 is a J�holo�

morphic curve for J � J	� q�e�d�

Let St � R� denote the graph of �t and let

�� � R
� � R

��

�x�� y�� x�� y�� 
� �x�� y���

denote the projection�

Lemma ���� The Jacobian of the di�eomorphism ��jSt � St �
D�� computed with respect to the induced metric on St� equals 
�

p
��

Proof� Consider the di�eomorphism�

����
�� � D� � St�

�x� y� 
� �x� y� u� v��

Under d������� we have

�
�x

�X � �

�x�
� ux

�
�x�

� vx
�
�y�

�

�
�y

�Y � �

�y�
� uy

�
�x�

� vy
�
�y�

�
�����

Let g � gij be the metric on St induced from the euclidean metric on
R

�� Then�

g�� � 
 � ux
� � vx

��

g�� � uxuy � vxvy�

g�� � 
 � uy
� � vy

��
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Using ���
��a� it is easy to show that det g � �� Let�

�
�X
�Y

�
� A

�
X
Y

�
��� �

be an orthonormal frame on St� where A is a �� � nonsingular matrix�
This implies�

X � Y � det A�� �X � �Y ������

Hence from ����� we have�

det�d���
���� � det A��������

From ��� � it follows that� Id � AgAt� Thus using det g � ��

det A�� � �det g�
�
� �

p
�����
��

Combining ����� and ���
�� we conclude det�d���jSt �� �
�p
�
� q�e�d�

Theorem ���� S	 is the graph of a di�eomorphism

�t� � D� � D��t	��

Proof� The surface St is also the image of the maps ft and Ft� Since
the maps Ft� converge in Ck to Ft� it follows from the lemma that�
using the induced metric on S	� we have�

det�d���jS� �� �
�p
�
�

In particular� ��jS� � S	 � D� is a local di�eomorphism and hence a
global di�eomorphism�

A similar argument shows that the projection�

�� � R
� � R

��

�x�� y�� x�� y�� 
� �x�� y���

restricted to S	 is a di�eomorphism S	 � D��t	�� Set�

�t� � �� � ���jS� �
���

q�e�d�

The graph of �t� is the surface S	 and therefore is both minimal and
lagrangian� This completes the proof of � closedness � and the proof of
Theorem ��
�
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�� Uniqueness

Let � � �u� v� � D� � D� be a minimal lagrangian di�eomorphism�
Then �u� v� satisfy the equations�

uxvy � uyvx � 
�
sin�����uy � vx� � � cos�����ux � vy��
r��u� v� � � if r��x� y� � ��

���
�

where � is a constant� We have already remarked at the beginning of x�
that by de
ning the lagrangian angle using di�erent parallel unit ��� ��
forms� any value of � in ���
� can be obtained� This is the observation
made to produce a solution of the second boundary value problem for
the Monge�Amp�ere equation� Note however that the value of � remains
unchanged if both the �x� y� coordinates on the domain R� and the �u� v�
coordinates on the target R� are rotated the same amount� Thus� up
to such diagonal rotations of coordinates� given a minimal lagrangian
di�eomorphism there is a unique choice of � such that the di�eomor�
phism is the gradient of a function� Of course if the domains are not
connected or simply connected there is in general no such choice�

Brenier ��� proves the existence and uniqueness of a weak solution
of the second boundary value problem under very general conditions
on the domain that are� in particular� satis
ed when the domains have
smooth boundary� Hence we have�

Theorem ���� If D� and D� are connected� simply connected do�
mains with smooth boundary and equal area� then there is at most one
minimal lagrangian di�eomorphism D� � D� up to diagonal rotations�
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